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SI* (MODERN METRIC) CONVERSION FACTORS
APPROXIMATE CONVERSIONS TO SI UNITS

Symbol When You Know Multiply By To Find Symbol
LENGTH

in inches 25.4 millimeters mm
ft feet 0.305 meters m
yd yards 0.914 meters m
mi miles 1.61 kilometers km

AREA
in2 square inches 645.2 square millimeters mm2

ft2 square feet 0.093 square meters m2

yd2 square yard 0.836 square meters m2

ac acres 0.405 hectares ha
mi2 square miles 2.59 square kilometers km2

VOLUME
fl oz fluid ounces 29.57 milliliters mL
gal gallons 3.785 liters L
ft3 cubic feet 0.028 cubic meters m3

yd3 cubic yards 0.755 cubic meters m3

NOTE: volumes greater than 1,000 L shall be shown in m3

MASS
oz ounces 28.35 grams g
lb pounds 0.454 kilograms kg

T short tons (2,000 lb) 0.907 megagrams (or “metric ton”) Mg (or “t”)
TEMPERATURE (exact degrees)

°F Fahrenheit
5 (F-32)/9

Celsius °C
or (F-32)/1.8

ILLUMINATION
fc foot-candles 10.76 lux lx

fl foot-Lamberts 3.426 candela/m2 cd/m2

FORCE and PRESSURE or STRESS
lbf poundforce 4.45 newtons N
lbf/in2 poundforce per square inch 6.89 kilopascals kPa

APPROXIMATE CONVERSIONS TO SI UNITS
Symbol When You Know Multiply By To Find Symbol

LENGTH
mm millimeters 0.039 inches in
m meters 3.28 feet ft
m meters 1.09 yards yd
km kilometers 0.621 miles mi

AREA
mm2 square millimeters 0.0016 square inches in2

m2 square meters 10.764 square feet ft2

m2 square meters 1.195 square yards yd2

ha hectares 2.47 acres ac
km2 square kilometers 0.386 square miles mi2

VOLUME
mL milliliters 0.034 fluid ounces fl oz
L liters 0.264 gallons gal
m3 cubic meters 35.314 cubic feet ft3

m3 cubic meters 1.307 cubic yards yd3

MASS
g grams 0.035 ounces oz
kg kilograms 2.202 pounds lb
Mg (or “t”) megagrams (or “metric ton”) 1.103 short tons (2,000 lbs) T

TEMPERATURE (exact degrees)
°C Celsius 1.8C+32 Fahrenheit °F

ILLUMINATION
lx lux 0.0929 foot-candles fc
cd/m2 candela/m2 0.2919 foot-Lamberts fl

FORCE and PRESSURE or STRESS
N newtons 2.225 poundforce lbf
kPa kilopascals 0.145 poundforce per square inch lbfin2

*SI is the symbol for International System of Units. Appropriate rounding should be made to comply with Section 4 of ASTM E380.  
(revised March 2003)
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WORKSHOP BACKGROUND

On May 30 and 31, 2023, the Federal Highway 
Administration’s (FHWA) Exploratory Advanced 
Research (EAR) Program held an event, Innovative 
Methods in Roadway Flooding Workshop, that 
showcased groundbreaking methods to detect, predict, 
and model roadway flooding using machine-learning 
(ML) and artificial intelligence (AI) technologies. The 
workshop aimed to identify the maturity, piloting 
techniques, and lessons from deployments of novel 
data collection and modeling methods in managing 
roadway flooding hazards. The workshop organizers 
wanted participants to learn how to leverage engineering, 
computer and climate science, and social science 
expertise for roadway flooding methodologies. These 
presentations showcased early-stage research. The 
presentations and subsequent discussions identified 
critical gaps in data availability and areas for 
collaboration between public institutions, private firms, 
and researchers (FHWA 2023).

The workshop featured the following presentations 
(FHWA 2023):

1. Presentation 1. Ahmed Mustafa and Pablo 
Herreros-Cantis, New School—AI-Powered 
Flood Simulations: Overcoming Traditional 
Hydraulic Model Limitations.

2. Presentation 2. Brett Sanders, University of 
California Irvine—Fine Resolution Inundation 
Modeling in Southern California. 

3. Presentation 3. Mikhail Chester, Arizona State 
University—Community-Based Automated Flood 
Detection and Warning Systems.

4. Presentation 4. Mecit Cetin and Khan 
Iftekharuddin, Old Dominion University—
Recurrent Roadway Flooding: Image-Based 
Detection, Driver Behavior, and Impacts on 
Traffic Flow.

5. Presentation 5. Andrea Silverman, New York 
University—FloodNet: Real-Time, Hyperlocal 
Flood Monitoring in New York City.

6. Presentation 6. Mayank Ojha and Miho 
Mazereeuw, Massachusetts Institute of 
Technology (MIT)—Crowdsourcing and AI for 
Roadway Flood Management.

7. Presentation 7. Valeriy Ivanov, University of 
Michigan—Flood Ensemble Predictions: From 
Pushed-Forward Parametric Uncertainty to 
Probabilistic Error Estimation.

Executive Summary
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KEY INSIGHTS FOR TRANSPORTATION

The workshop had the following takeaways  
(FHWA 2023):

• Deploying a dedicated network of flooding 
sensors for more detailed flooding awareness 
provides higher quality data but requires key 
prioritization to manage limited resources. 
Researchers in Arizona and New York City, NY, 
have piloted real-time flood detection solutions to 
integrate citywide (e.g., social media, gauges, 
mobile hydrology) and local data (e.g., sensor/
floodcam) sources. (See presentations 3 and 5.) 
The placement of sensors is prioritized based on 
stakeholder needs. (See the workshop wrap-up 
discussion and presentations 5 and 6.)

• Implementing new data sources (such as 
crowdsourced imagery) will help researchers 
determine valuable insights for emergency 
managers, including impacts on vehicle flow. 
(See presentations 4 and 6.) Computer vision 
approaches to coastal city flooding demonstrate 
that ML algorithms can extract information from 
images and video to estimate floodwater depth 
and extent accurately. (See presentation 4.) 
Cities that collect data on vehicles per roadway 
per hour (traffic flow) can use AI to estimate 
flooding impacts on roadway traffic flow. (See 
presentation 4.) MIT’s RiskMap tool deploys 
crowdsourced social media information and ML  
to distill useful analysis from the high volume of 
imagery data during flood events (MIT 2016). 
(See presentation 6.) 

• Integrating AI into hydraulic and hydrologic (H&H) 
models may enable rapid production of large-scale, 
detailed city flood simulations. AI-trained surrogate 
models, which mathematically approximate 
flooding dynamics, may run simulations more 
rapidly than traditional H&H models and 
provide uncertainty ranges of flood model 
predictions. (See presentations 1 and 7.) New 
methods potentially overcome computational 
bottlenecks to reduce the time and processing 
power required to generate high-resolution 
models compared to traditional approaches. 

• Obtaining precise and validated infrastructure 
data is essential for high-quality models, but a 
critical gap exists in calibration and validation 
data availability, especially for subsurface 
infrastructure. To use AI-assisted modeling tools, 
practitioners need access to high-quality water 
and stormwater infrastructure data.

• Integrating and analyzing diverse information 
sources, such as sensors, meteorological data, 
and crowdsourced observations, is a significant 
challenge to providing real-time flood detection. 
(See presentations 2, 3, and 5.) A key research 
opportunity is acquiring mobile device location 
data from service providers and application 
metadata. (See the workshop wrap-up discussion 
section and presentations 1 and 2.)
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PRESENTATION 1. AHMED MUSTAFA AND PABLO 
HERREROS-CANTIS, NEW SCHOOL—AI-POWERED 
FLOOD SIMULATIONS—OVERCOMING TRADITIONAL 
HYDRAULIC MODEL LIMITATIONS

Mustafa and Herreros-Cantis presented research on 
high-resolution simulations of urban flooding in U.S. 
cities (FHWA 2023). They discussed how AI may help 
overcome the limitations of traditional hydraulic models, 
such as computation time and resource constraints. 

The presentation had the following significant points 
(FHWA 2023):

• Technology—CityCAT, the flood model used in the 
project, has relatively low data requirements and 
can compute the infiltration of surface runoff on 
impervious surfaces (Engineering and Physical 
Sciences Research Council n.d.). 

• Method—The project assessed flood simulation of 
models before and after AI assistance, comparing 
the cost, required computing power, and time. 
Before implementing generative AI, the project 
used cloud computing services to overcome 
computational limitations, as CityCAT and similar 
tools are resource intensive.

Presentation Summaries

• Insight—AI enhances the capabilities of hydraulic 
models; however, higher resolution data are 
exponentially more expensive, and certain data 
types, such as buildings versus land cover, have 
limitations. AI models may incorporate more 
variables than traditional hydraulic models, such as 
transportation and water infrastructure. The 
presentation showcased the potential of training 
deep-learning models, particularly convolutional 
neural networks (CNN), to generate flood 
simulations; figure 1 shows how similarly CNN can 
match existing models. CNNs can process images 
and text as layers and output probability 
distributions, making them useful for image 
classification with minimal processing. AI may 
improve the flood modeling process by 
synthesizing missing data, quantifying and 
analyzing uncertainties.

• Insight—The results showed that modeling 
options for flood risk reduction and water depth 
reduction in important areas can be achieved in 
seconds using the AI-powered optimization engine. 
(See figure 2.) AI can be trained on the output of 
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LF = LISFLOOD-FP.
Figure 1. Flood inundation predictions, with CNN  
on the left and LF on the right (Kabir et al. 2020).

© 2020 Mustafa et al.
Med. = median.
Figure 2. Image. Examples of flood 
predictions for different street networks 
and land uses. Users can generate optimal 
urban layouts to reduce flood risk, including 
priority areas marked by boxes 
(Mustafa et al. 2020). 



hydraulic models, allowing for the rapid generation 
of flood simulations and the development of 
more advanced and sophisticated models. The 
use of the CNN and Markov chain Monte Carlo 
optimization engine (i.e., a system that explores 
different possibilities step by step to compute the 
best solution to a problem) in urban layout design 
provides a new strategy to mitigate flooding. 
Users can direct the AI to develop different 
design permutations for a given urban area by 
designating high-priority areas and choosing 
various flood depth exposure levels. The training 
mode for the optimization engine involved 7,000 
offline simulations with the WOLF two-dimensional 
(2D) hydraulic model for more than 1 mo, using 
10 workstations; figure 3 shows the predictions 
of the CNN model compared with the WOLF 2D 
model (University of Liege 2023). The presentation 
referenced previous studies that trained CNNs on 
2D models and used Bayesian statistical methods 
(i.e., updating prior knowledge based on new 
data and information) for rapid computation and 
simulation of historical events (Kabir et al. 2020; 
Mustafa et al. 2020).

Question for presenters (FHWA 2023) 

How significant are the issues with lack of data on 
subsurface conditions?

• Mustafa: Lack of subsurface data are less 
significant in urban areas because of the high 
number of impervious surfaces, which changes 
stormwater and fluvial runoff.

• Herrero: Currently, there are issues with 
inaccurate representation of sea-level rise and 
modeling of sewer backup.

PRESENTATION 2. BRETT SANDERS,  
UNIVERSITY OF CALIFORNIA IRVINE 
—FINE RESOLUTION INUNDATION MODELING  
IN SOUTHERN CALIFORNIA

Sanders presented research on fine-resolution 
inundation modeling in southern California and the 
interaction between flooding dynamics and 
transportation infrastructure performance. Flooding 
significantly disrupts transportation networks during 
storm events, and transportation infrastructure plays a 
role in the distribution of flood inundation. New 
computational methods provide opportunities to rapidly 
develop city-scale, detailed flood models (FHWA 2023).
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Sanders’ presentation had the following significant 
points (FHWA 2023):

• Technology—Sanders introduced the Parallel 
Raster Inundation Model (PRIMo) and data 
processing methods to support detailed modeling 
and analysis of urban flooding, including estimating 
flood depth along land parcels and roadways 
(Sanders and Schubert 2019). PRIMo uses the 
subgrid modeling method, incorporating fine-grid, 
higher resolution information to update coarse-grid, 
lower resolution data and improve accuracy.

• Method—The project incorporates built 
infrastructure into the digital elevation model 
(DEM), improving model outcomes. Sanders 
addressed how transportation infrastructure, such 
as elevated roadways, affects flood extents. In 
addition, many flood simulations ignore how small 
pipes, inlets, and culverts impact drainage. The 
researchers developed a coupled one-dimensional 
(1D) model in which linear data, such as pipes, are 
“burned in” to the DEM.

• Insight—PRIMo overcomes the computational 
bottleneck to high-resolution flood modeling. 
Researchers tested PRIMo as an alternative 
solution to overcome bottlenecks that have 
hindered fine-resolution urban flood modeling. 
PRIMo uses parallel scaling (i.e., a strategy in 
computing to add more processors or servers to 

handle more work simultaneously) and rasterization 
(i.e., the technique of converting data associated 
with lines or shapes to be associated with a grid), 
enabling practical, city-scale flood simulations. The 
hydro-conditioning method, as demonstrated in a 
study by Kahl et al. (2022), was mentioned as an 
effective approach to simulate flooding over large 
spatial extents with high-resolution data, utilizing dual 
grid modeling to expedite processing.

• Insight—Increased resolution enables faster, 
more accurate assessment of flood risk at the city 
scale. The presentation also referred to a study 
by Sanders et al. (2023) that focused on 
improving Federal Emergency Management 
Agency (FEMA) maps with increased resolution 
and providing a more realistic understanding of 
channel capacity under 100-yr flood conditions, 
significantly impacting the population of 
Los Angeles, CA. Fine resolution inundation 
modeling can be fast and reasonably accurate, 

© 2022 Kahl et al.
Figure 5. Image. Comparison of grid edge classification as levees at different grid sizes α (Kahl et al. 2022). 

© 2023 Brett Sanders.
Figure 4. Image. Adding channels (left) and underpasses 
(right) to DEM (Kahl et al. 2022; Sanders et al. 2023).
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with 3-m resolution in megacities being 20 times 
faster than real-time run on a computer with 
urban textures influencing flooding distribution. 

Questions for Sanders (FHWA 2023)

How did you resolve the issue of “false blockages,”  
in which models interpreting 1D imagery believe  
that infrastructure, such as elevated highways, 
prevents inundation? 

Sanders: We gained access to culvert shapefiles/
datasets from public works and overlaid these with 
the DEMs. This action enabled more accurate 
drainage modeling.

Following up on the previous question, is the process 
for finding data to burn into the DEM automated?

Collaborator Jo Schubert: The process was 
somewhat automated; we were able to automate finding 
the centerline of channels, extracting points, and 
looking for abrupt changes like high points. For elevated 
roadways, models looked for places like bridges. 
Although this process was mostly automated, we 
sometimes edited the output based on site parameters. 
We need channel widths to approximate drainage, but 
sometimes this parameter is not in the data (for example, 
in storm drain data). Sometimes we made estimated 
guesses, which produced procedural uncertainty.

What are your thoughts on how to incorporate 
stormwater infrastructure (e.g., pipes, sewers, detention 
ponds) in the models? Do you use it? When is it vital, 
and when is it safe to neglect?

Sanders: It’s tough to answer that question. I haven’t 
done a deep dive into differences in skill versus 
infrastructure representation. But I like to think about 
three levels of infrastructure: main channels, secondary 
channels and pipes, and curb inlets and small 
subsurface pipes to the next big drain. We try to resolve 
levels one and two in our models. Larger events are 
easier to simulate; smaller events are more difficult. For 
example, clogged pipes create uncertainty.

PRESENTATION 3. MIKHAIL CHESTER,  
ARIZONA STATE UNIVERSITY 
—COMMUNITY-BASED AUTOMATED FLOOD  
DETECTION AND WARNING SYSTEMS

In his presentation, Chester discussed the FloodAware 
project, which aims to create a “smart city” vision 
of urban flood management by using networked 
technologies and hydrological modeling for 
real-time flood detection and warning systems 
(FloodAware 2022). The project’s goal is to provide both 
authorities and citizens with up-to-date information about 
current and expected flooding risks (FHWA 2023).

Chester’s presentation had the following significant 
points (FHWA 2023):

• Technology—FloodAware consists of sensors, 
citizen engagement, desktop and mobile 
interfaces, and the centralized FloodAware 
server. Chester introduced the communication 
aspect of the FloodAware system, featuring the 
Integrated Flood Stage Observation Network, a 
cloud-based platform with a Web application, 
real-time server, and Structured Query Language 
database that provides public availability of flood 
information. Chester highlighted the challenges of 
existing camera sensors, including factors such 
as camera age, identifying suitable angles and 
camera resolution to capture flooding, inability to 
connect to existing power supplies, and the need 
for built-in modems to control camera activation.

• Method—Communities need low-cost ways to 
determine where flooding is and how to respond 
at any given time. The presentation highlighted 
the gap in publicly available flood detection 
applications, questioning why vehicle routing 
applications used by drivers do not provide 
real-time flood information and emphasizing the 
need to empower communities and provide 
alternatives to centralized solutions.
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• Method—FloodAware compiled diverse data 
sources in two Arizona cities to produce real-time 
flood risk assessments. The focus of FloodAware 
is to leverage existing cameras and sensors to 
create a simple and low-cost threshold for 
participation by municipalities, enabling them to 
sense, predict, and inform citizens and city 
managers about flooding events. The researchers 
conducted an inventory of candidate information 
streams for flood detection, including sensors, 
such as floodcams, gauges, mobile hydrology, 
crowd hydrology, and social media mining. The 
crowd hydrology approach seeks to obtain more 
flood monitoring data by enlisting the assistance of 
citizen scientists; individuals can follow the QR 
code or text a phone number that is printed on a 
flood gauge to report the height of flooding during 
a given event. (See figure 6 for a demonstration.) 
The project tested FloodAware during the Arizona 
monsoon season, deploying stream gauges and 
floodcams in Flagstaff, AZ, and Phoenix, AZ; 
gathering flood images and videos from existing 
cameras for image recognition; and collecting 
social media data.

• Insights—Beyond the challenge of compiling 
data, each data source has individual 
considerations to produce information useful  
for communities and government.  
The presentation addressed challenges for social 
media mining, mobile interfaces, and crowd 
hydrology, including the time lag between the start 
of an event and social media postings, image 
processing challenges for flood gauge 
measurements, and the usefulness of crowd 
hydrology in high-traffic areas. 

• Insights—Data streams can assist in hydrologic  
and hydraulic modeling. More data mean better 
calibration, validation, and assimilation to estimate 
floodwater level, volume, and extent.

Question for Mikhail Chester (FHWA 2023)

Have you collaborated with companies providing 
vehicle-routing applications for smartphones?

No, but Waze™, a vehicle-routing application, is 
integrating flooding impacts into its navigational 
algorithm. Our project is currently exploring expanded 
partnerships with public agencies (Waze 2023).
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Figure 6. Image. A flood gauge placed in a park for visitors to report water levels via text message and how its data are processed.



PRESENTATION 4. MECIT CETIN AND KHAN  
IFTEKHARUDDIN, OLD DOMINION UNIVERSITY 
—RECURRENT ROADWAY FLOODING:  
IMAGE-BASED DETECTION, DRIVER BEHAVIOR, 
AND IMPACTS ON TRAFFIC FLOW

Mecit Cetin discussed his team’s recent work on 
recurrent roadway flooding in Norfolk, VA; its impacts on 
traffic flow and driver behavior; and the use of computer 
vision-based approaches to detect floodwater on 
roadways. His presentation also featured findings on 
AI-aided analysis of flooding impacts on traffic flow.

The presentation had the following major points  
(FHWA 2023):

• Method—The project tests the functionality of 
computer vision tools in detecting floods on 
roadways using image segmentation. Computer 
vision techniques allow for extracting useful 
information from image and video data to detect 
and analyze floodwater on roadways. The 
presentation highlighted the challenges and 
approaches in image segmentation—separating 
floodwater extent from the rest of the image.  
The team used two methods: superpixel semantic 
segmentation (i.e., a technique of breaking down 
an image into segments to analyze them) and the 
deep-learning architecture full convolutional 
network (FCN).  

The former method divides the image into discrete 
units (superpixels), and the ML model evaluates 
whether each piece is flooded, reducing complexity 
and computational time by analyzing the image at 
scales larger than a single pixel. (See figure 7.) 
Unlike traditional networks used for image 
classification, an FCN retains spatial information 
throughout its layers, enabling it to efficiently 
analyze an image and classify each pixel into 
specific categories. The result is an outline of 
different objects or regions within the image. An 
FCN is a sophisticated tool for automated image 
understanding and segmentation, aiding in 
identifying and delineating distinct elements in  
a visual scene.

• Insight—Image segmentation models accurately 
labeled media as flooded/nonflooded with 
90–95 percent accuracy. The performance of the 
models was evaluated using accuracy metrics, 
such as precision, recall, and F1 score. Cetin 
discussed the limitations of the deep-learning/FCN 
approach, particularly in distinguishing wet 
surfaces from water during flooding. He proposed 
alternative methods, such as edge detection 
(i.e., finding the outlines of objects in an image) 
and lane segmentation, for more accurate flood 
extent estimation.
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• Insight—AI approaches enable rapid estimation of 
floodwater depth using images and reference 
heights for vehicle components. The presentation 
addressed the use of computer vision to estimate 
floodwater depth, using synthetic data and 3D 
models to train CNN and object detection models, 
allowing for depth comparisons using reference 
dimensions of tires.

• Insight—Based on an analysis of an arterial 
roadway, the project demonstrated that 
municipalities with video data of past flooding can 
assess flood impacts on traffic flow and capacity. 
Expanded roadway data collection could enable 
better real-time routing and decisionmaking 
during future floods by providing benchmarks for 
driver behavior at various flood levels. The 
researchers studied Hurricane Ian’s flooding 
impacts in 2022 on traffic flow and roadway 
capacity using sensor data on Hampton 
Boulevard in Norfolk, VA. The cumulative plots of 
flow-rate impacts on the road demonstrate the 
disruptions caused by flooding on traffic flow, 
showing the contrast between a typical peak flow 
rate versus the flow rate during a flood event.

Question for Mecit Cetin (FHWA 2023)

Is the reduction in capacity causing changes in route 
choice or fewer trips during the flood event?

Waze and other navigation applications enable people 
to choose alternative routes, not necessarily fewer trips 
(Waze 2023).

Question for both Mikhail Chester and Mecit Cetin 
(FHWA 2023)

How far are these approaches from producing  
high-confidence 2D inundation maps (realtime or 
postevent)? What are the major challenges? Where 
would you invest most resources?

• Chester: A major limitation is the high cost of 
premium sensors, like cameras. Also, there are 
limitations on where you can place a camera. The 
ubiquity of mobile phones can supplement getting 
real-time location data.

• Cetin: A dedicated camera-to-server pipeline is 
poorly scalable (as it is expensive), so 
crowdsourced data processing is ideal.

PRESENTATION 5. ANDREA SILVERMAN,  
NEW YORK UNIVERSITY—FLOODNET:  
REAL-TIME, HYPERLOCAL FLOOD  
MONITORING IN NEW YORK CITY 

Andrea Silverman presented on FloodNet, a project to 
collect real-time, hyperlocal flood data in New York 
City, NY, using low-cost ultrasonic sensors. FloodNet, 
a partnership between academic researchers, New 
York City municipal agencies, and community 
organizations, aims to provide data to support multiple 
stakeholders with different flood data needs (FloodNet 
2021; FHWA 2023).

Their presentation had the following major points 
(FHWA 2023):

• Technology—The project uses ultrasonic sensors 
that accurately measure water depth by calculating 
the time it takes for the pulse to return to the sensor. 
These measurements are taken every minute, and 
the data is made available in realtime on an 
interactive data dashboard.

• Method—FloodNet seeks to collect and analyze 
quantitative data on urban floods at the city scale. 
Flooding significantly impacts infrastructure, 
mobility, public health, and safety, yet there is a 
lack of quantitative data on urban floods. FloodNet 
aims to address this gap by systematically 
collecting data on the presence, depth, and 
duration of street-level floods.

• Insight—The sensors in two case studies provided 
detailed information about flood events, including 
the rate of onset, presence of multiple flooding 
events, and peak depth. Silverman presented two 
case studies: the first focused on high-intensity 
precipitation events (Hurricanes Henri and Ida) in 
Brooklyn, NY, and the other on coastal community 
high-tide flooding in Far Rockaway, Queens, NY. 
Data from the sensors detected flooding before 
recorded emergency calls.

• Insight—Sensor placement remains a resource 
allocation challenge. Future steps for FloodNet 
include securing additional funding to expand  
the sensor network, improving sensor capabilities, 
addressing challenges related to connectivity  
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and uptime, and developing data processing 
techniques to identify and clean anomalies in  
the sensor data. The project aims to install 500 
sensors over the next 5 yr, focusing on placing 
sensors in areas identified through flood risk 
analysis and addressing the needs of both 
communities and government agencies.

• Insight—ML can assist in sensor data analysis. 
Initial work demonstrates that ML can help 
researchers clean sensor data by identifying 
nonflood anomalies, such as when a person walks 
under the sensor or places a garbage can under 
the sensor, based on the shape of the sensor’s  
data time series.

Questions for Andrea Silverman

How was sensor accuracy measured?

We used a combination of the ultrasonic sensor 
manufacturer’s quoted specifications of 1-percent 
accuracy and both field and lab-based testing. The 
lab-based and field testing involved multiple distance 
measurements versus ground truth (ruler and laser 
measures) under different temperature/humidity 
conditions. We also conducted field and lab-based 
testing by measuring distances with a National 
Institute of Standards and Technology-certified ruler to 
confirm that sensors meet requirements. In the field, 
we ensured we could see dynamic changes by 
comparing sensors with National Oceanic and 
Atmospheric Administration (NOAA) and U.S. 
Geological Survey tidal gauges. We have also 
compared sensor readings to certified rulers during 
flooding events.

Did you use a data reporting standard?

We have plans for the data to meet the standards 
required for inclusion in the NOAA 
Hydrometeorological Automated Data System and 
Meteorological Assimilation Data Ingest System, 
which include a quality-control protocol for data 
reporting (NOAA n.d.; NOAA 2022). 

How does the density of an urban environment affect 
placement decisionmaking?

We developed a prioritization of sensor placement 
based on exposure to previous flood events, then we go 
down the list, depending on whether there is available 
infrastructure, especially network access. In some 
cases, we may have to negotiate with a partner, such as 
the Metropolitan Transportation Authority, to obtain the 
rights to place the sensor on a bridge or other element 
of the built environment. 

Due to resource constraints, there is a gap between 
the availability of sensors and areas at risk. We must 
contend with data scarcity. One solution is pairing 
real-time data (measured flood events) with 
simulation models.

PRESENTATION 6. MAYANK OJHA AND MIHO  
MAZEREEUW, MIT—CROWDSOURCING AND  
AI FOR ROADWAY FLOOD MANAGEMENT

The Urban Risk Lab at MIT developed RiskMap,  
a crowdsourced situational awareness and risk 
management platform deployed in multiple countries 
(MIT 2016). The project aimed to integrate crowdsourcing 
and AI to enhance support for emergency managers 
and long-term flood risk mitigation solutions. RiskMap 
addresses the challenge of siloed information sharing 
during emergencies by providing a consolidated and 
processed platform for residents to submit observations 
and data (FHWA 2023).

The presentation had the following major points  
(FHWA 2023):

• Technology—RiskMap links residents to emergency 
managers via its interface and dashboard system 
through a rule-based chatbot on a Web application. 
On this Web application, residents can progress 
through a “card deck” to report various 
observations, including flooding. Real-time maps 
display the data, which can be filtered by time, and 
government and emergency management service 
personnel have access to administrator accounts to 
communicate with users on supported platforms.
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• Method—Integrating crowdsourced data from 
residents with existing sensor, gauge, and traffic 
camera information enables the development of a 
real-time, AI-based triaging system. This system 
can promptly identify flooding hotspots and support 
timely decisionmaking processes.

• Method—AI can assist emergency managers by 
parsing crowdsourced image data. The 
presentation included use cases of AI triaging 
crowdsourced images in which the project 
employed ensemble learning (i.e., combining 
multiple ML models to improve predictive 
performance) and multivariate geospatial clustering 
(i.e., analyzing data clusters on a map based on 
many variables to find relationships between them). 
The researchers trained the model using labeled 
data, including reports from firefighters in 
Fukuchiyama, Japan, and crowdsourced labeling, 
along with reliability assessment, was conducted to 
enhance the model’s accuracy.

• Insight—The presentation highlighted the potential 
to incorporate crowdsourced data from RiskMap 
into navigation applications. By embedding 
RiskMap, these applications can help with 
evacuation and finding shelter during disasters, 
addressing the issue of directing people toward 
hazards due to low traffic optimization focus.

• Insight—The project achieved dashboard design 
improvements by continuously implementing user 
feedback throughout the lifecycle of the product. 
The presentation covered user experience research 
for the React Dashboard, which involves audits and 
retraining to improve the user experience 
(Flatlogic n.d.). Implementing human-in-the-loop 
(i.e., having people double check computing 
outcomes) and active-learning (i.e., ML algorithm 
designed to learn from human interaction) 
paradigms ensures continuous improvement and 
user engagement.

Question for Mayank Ojha

What is the timing of the label checking?  
Is it part of an after-action assessment of an event? 

We apply Krippendorf’s alpha (i.e., a statistic used to 
measure how many raters agree when evaluating 
something), then determine whether expert annotations 
exist (Krippendorff 2013). The threshold for model 
training is a 70-percent reliability score.

PRESENTATION 7. VALERIY IVANOV, UNIVERSITY 
OF MICHIGAN—FLOOD ENSEMBLE PREDICTIONS: 
FROM PUSHED-FORWARD PARAMETRIC UNCER-
TAINTY TO PROBABILISTIC ERROR ESTIMATION

Valeriy Ivanov’s presentation focused on a novel 
modeling framework for flood forecasting that combines 
hydrologic-hydrodynamic models, surrogate modeling 
(i.e., a technique for making a simpler version of a 
complex computation model), and ML to address 
computational burden and data-model uncertainties.

The presentation had the following major points  
(FHWA 2023): 

• Method—The project supplements the mature flood 
modeling technology with novel ML techniques to 
quantify uncertainty. The proposed methodological 
framework advocates for the practical utility of 
high-fidelity models in flood forecasting, with 
surrogate and ML modeling aiding real-time 
applications and uncertainty quantification.

• Method—High-resolution rainfall and infrastructure 
data may improve pluvial (i.e., rainwater) flooding 
models to perform as well as fluvial (i.e., river) 
flooding models. The data component of the 
framework includes high-resolution precipitation 
forecasts, urban layout information (e.g., buildings, 
roads, stormwater infrastructure), and calibration 
and validation data. The availability of urban layout 
data has significantly improved for cities and 
municipalities in recent years. Predictive fluvial 
flooding models have improved significantly since 
the 1970s and continue to advance.
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• Insight—Surrogate models, a proven solution for 
uncertainty quantification, can replace high-fidelity 
models for computationally intensive tasks and 
stack decomposition of model output. Challenges  
in high-resolution flood prediction include vast 
computational efforts and the need to rigorously 
quantify uncertainty in input data, especially 
precipitation. A case study that used Hurricane 
Harvey data demonstrated the potential use of 
surrogate models for routing people away from 
impacted areas around Houston in 2017 (Ivanov  
et al. 2021). Polynomial chaos expansion (i.e., 
measuring how the uncertainty of inputs impact the 
results of complex computations) models and ML 
were employed to train and improve the accuracy 
of the surrogate models.

• Insight—New methods address the challenge of 
predictive accuracy, including the need to quantify 
the error between surrogate models and high-fidelity 
models. The error is decomposed into reducible and 
irreducible components, with research efforts 
focused on identifying areas where the surrogate 
model may not perform well.
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HOW WERE USE CASES OR GEOGRAPHIC SCALE 
CONSIDERED WHEN DEVELOPING METHODS  
FOR DIFFERENT USES, SUCH AS SHORT-TERM  
OPERATIONS OR LONG-TERM DECISIONS ABOUT 
ASSET LIFECYCLE? 

One challenge that the research team for 
presentation 4 has encountered in Virginia  
is getting permissions for placing sensors. The 
team has had difficulty negotiating with different  
levels of government (Federal Government, 
State departments of transportation (DOTs), 
local agencies) for permission to conduct  
sensor placement and maintenance on 
highways, for example.

RESEARCHERS NEED TO OBTAIN PERMISSION 
FROM A STATE OR LOCAL DOT TO PLACE  
SENSORS ON ROADS. HOW CAN ISSUES OF  
INTERAGENCY COOPERATION BE ADDRESSED?

Working with State DOTs may be more difficult 
than local DOTs, but FHWA division offices can 
work with States to resolve issues from specific 
projects. There are some technical issues that 
come into play as well: local roads might have 
better access to power sources and may be  
easier to implement maintenance plans and  
install sensors and other equipment. 

SENSOR PLACEMENT IS IMPORTANT FOR  
VALIDATION OF MODELS. IF RESEARCHERS  
HAVE ACCESS TO SENSOR DATA, WHAT IS  
THE BEST TYPE TO HAVE?

• Placement of sensors is tied to engineering research 
and modeling. Place the sensors where a local 
government knows flooding happens historically.

• Flood modeling is not contiguous, and sensor data 
is not contiguous. Infrastructure is a confounding 
variable. How do we reconstruct manholes? 

• Sensor density and location depend on the use. 
FHWA is seeking information for highway 
operations. The sensors and models really need  
to work across domains for emergency services, 
agencies, power systems, and housing.

HOW DO RESEARCHERS MAKE THE DATA AND 
MODELS WORK ACROSS DOMAINS, AND HOW 
MUCH DO RESEARCHERS NEED TO CUSTOMIZE?

• Researchers should be open to using different 
types of data. Analysis depends on what 
stakeholders need. Data collected for the FloodNet 
project are somewhat universal in that such data 
cover different types of flooding. The FloodNet 
project is open access.

• Sensors need to complement models depending on 
scale and context; researchers can’t afford to run 
large-scale models for every instance of nuisance 
flooding, but they are essential for planning purposes. 
Considering fluvial versus nuisance flooding is 
important when using modeling and sensor data.

WHAT ARE THE CHALLENGES OF FOCUSING ON  
A SPECIFIC TYPE OF FLOODING VERSUS A MORE 
GENERALIST APPROACH?

• Valeriy Ivanov’s team focused on fluvial flooding 
and directed students to find data. The team 
scoured the internet and added images to a 
database. They noticed patterns and found new 
data sources, such as urban intersection cameras. 
A connection needs to be made between those 
searching for data and those collecting it. FEMA 
does have good data, including damage to property 
and locations.

• Cities are getting better at maintaining flood  
data imagery.

WHAT STRATEGIES FOR WORKING WITH STATE 
AND LOCAL DOTS TO GET DATA HAVE BEEN 
SUCCESSFUL? SHOULD RESEARCHERS HAVE 
PARTNERSHIPS WITH MANY GROUPS OR WORK 
EXTENSIVELY WITH A FEW GROUPS?

City Government connections/partners and  
access to their networks enabled the success  
of Silverman’s project.

Workshop Wrap-Up Discussion
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The workshop participants reached the following 
conclusions (FHWA 2023):

• AI enables the deployment of crowdsourced social 
media data to provide real-time, preprocessed 
information about roadway conditions to aid 
emergency managers and transportation planners 
in making decisions and informing the public.

• The sensor-to-server model addressed in 
presentations 3 and 5—with further development 
and testing—can address driving/navigational 
applications’ routing problems during emergencies.

• High-fidelity, human-scale flood predictions can 
answer the question, “Is it possible to route people 
away from the area of impact?”

• Multiple presentations demonstrated that AI 
reduces or eliminates computational bottlenecks  
in high-fidelity flood modeling. Model performance 
improvements combined with increased 
infrastructure data availability result in near 
real-time production of accurate citywide flooding 
simulations. Beyond an institutional focus on data 
availability, research is looking at improving 
uncertainty quantification. 

Conclusions
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EAR Program Results
As a proponent of applying ideas across traditional research fields  
to stimulate new problem-solving approaches, the EAR Program 
strives to develop partnerships with the public and private sector. 
The program bridges basic research (e.g., academic work funded  
by National Science Foundation grants) and applied research  
(e.g., studies funded by State DOTs). In addition to sponsoring 
projects that advance the development of highway infrastructure  
and operations, the EAR Program is committed to promoting  
cross-fertilization with other technical fields, furthering promising 
lines of research, and deepening vital research capacity.
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Getting Involved with the EAR Program
To take advantage of a broad variety of scientific and engineering discoveries, the EAR 
Program involves both traditional stakeholders (State department of transportation 
researchers, University Transportation Center researchers, and Transportation Research 
Board committee and panel members) and nontraditional stakeholders (investigators 
from private industry, related disciplines in academia, and research programs in other 
countries) throughout the research process.
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